Scott Painter

2021

  • Sjöberg, Ylva, et al. “Permafrost Promotes Shallow Groundwater Flow and Warmer Headwater Streams”. Water Resources Research, vol. 57, no. 2, 2021, https://doi.org/10.1029/2020WR027463.

2020

  • Coon, Ethan T., et al. “Coupling Surface Flow and Subsurface Flow in Complex Soil Structures Using Mimetic Finite Differences”. Advances in Water Resources, vol. 144, 2020, p. 103701, https://doi.org/10.1016/j.advwatres.2020.103701.
  • Jan, Ahmad, et al. “Evaluating Integrated Surface Subsurface Permafrost Thermal Hydrology Models in ATS (v0.88) Against Observations from a Polygonal Tundra Site”. Geoscientific Model Development, vol. 13, no. 5, 2020, pp. 2259-76, https://doi.org/10.5194/gmd-13-2259-202010.5194/gmd-13-2259-2020-supplement.
  • Jan, Ahmad, and Scott L. Painter. “Permafrost Thermal Conditions Are Sensitive to Shifts in Snow Timing”. Environmental Research Letters, vol. 15, no. 8, 2020, p. 084026, https://doi.org/10.1088/1748-9326/ab8ec4.

2019

  • Zheng, Jianqiu, et al. “Modeling Anaerobic Soil Organic Carbon Decomposition in Arctic Polygon Tundra: Insights into Soil Geochemical Influences on Carbon Mineralization”. Biogeosciences, vol. 16, no. 3, 2019, pp. 663-80, https://doi.org/10.5194/bg-16-663-2019.

2018

  • Jan, Ahmad, et al. “A Subgrid Approach for Modeling Microtopography Effects on Overland Flow”. Water Resources Research, vol. 54, no. 9, 2018, pp. 6153-67, https://doi.org/10.1029/2017WR021898.
  • Jan, Ahmad, et al. “An Intermediate-Scale Model for Thermal Hydrology in Low-Relief Permafrost-Affected Landscapes”. Computational Geosciences, 2018, https://doi.org/10.1007/s10596-017-9679-3.
  • Jafarov, Elchin E., et al. “Modeling the Role of Preferential Snow Accumulation in through Talik Development and Hillslope Groundwater Flow in a Transitional Permafrost Landscape”. Environmental Research Letters, vol. 13, no. 10, 2018, p. 105006, https://doi.org/10.1088/1748-9326/aadd30.

2016

  • Tang, Guoping, et al. “Addressing Numerical Challenges in Introducing a Reactive Transport Code into a Land Surface Model: A Biogeochemical Modeling Proof-of-Concept With CLM–PFLOTRAN 1.0”. Geoscientific Model Development, vol. 9, no. 3, 2016, pp. 927-46, https://doi.org/10.5194/gmd-9-927-2016.
  • Tang, Guoping, et al. “Biogeochemical Model of Carbon Dioxide and Methane Production in Anoxic Arctic Soil Microcosms”. Biogeosciences Discussions, 2016, pp. 1-31, https://doi.org/10.5194/bg-2016-20710.5194/bg-2016-207-supplement10.5194/bg-2016-207-RC110.5194/bg-2016-207-RC210.5194/bg-2016-207-RC310.5194/bg-2016-207-AC110.5194/bg-2016-207-AC2.
  • Harp, Dylan R., et al. “Effect of Soil Property Uncertainties on Permafrost Thaw Projections: A Calibration-Constrained Analysis”. The Cryosphere, vol. 10, no. 1, 2016, pp. 341-58, https://doi.org/10.5194/tc-10-341-201610.5194/tc-10-341-2016-supplement.
  • Atchley, Adam L., et al. “Influences and Interactions of Inundation, Peat, and Snow on Active Layer Thickness”. Geophysical Research Letters, vol. 43, no. 10, 2016, pp. 5116-23, https://doi.org/10.1002/2016GL068550.
  • Painter, Scott L., et al. “Integrated Surface Subsurface Permafrost Thermal Hydrology: Model Formulation and Proof-of-Concept Simulations”. Water Resources Research, vol. 52, no. 8, 2016, pp. 6062-77, https://doi.org/10.1002/2015WR018427.
  • Coon, Ethan T., et al. “Managing Complexity in Simulations of Land Surface and Near-Surface Processes”. Environmental Modelling & Software, vol. 78, 2016, pp. 134-49, https://doi.org/10.1016/j.envsoft.2015.12.017.
  • Sjöberg, Ylva, et al. “Thermal Effects of Groundwater Flow through Subarctic Fens: A Case Study Based on Field Observations and Numerical Modeling”. Water Resources Research, vol. 52, no. 3, 2016, pp. 1591-06, https://doi.org/10.1002/2015WR017571.

2015

  • Atchley, Adam L., et al. “Using Field Observations to Inform Thermal Hydrology Models of Permafrost Dynamics With ATS (v0.83)”. Geoscientific Model Development, vol. 8, no. 9, 2015, pp. 2701-22, https://doi.org/10.5194/gmd-8-2701-2015.

2014

  • Painter, Scott L., and Satish Karra. “Constitutive Model for Unfrozen Water Content in Subfreezing Unsaturated Soils”. Vadose Zone Journal, vol. 13, no. 4, 2014, https://doi.org/10.2136/vzj2013.04.0071.
  • Karra, Satish, et al. “Three-Phase Numerical Model for Subsurface Hydrology in Permafrost-Affected Regions (PFLOTRAN-ICE v1.0)”. The Cryosphere, vol. 8, no. 5, 2014, pp. 1935-50, https://doi.org/10.5194/tc-8-1935-2014.

2013

  • Painter, Scott L., et al. “Modeling Challenges for Predicting Hydrologic Response to Degrading Permafrost”. Hydrogeology Journal, vol. 21, no. 1, 2013, pp. 221-4, https://doi.org/10.1007/s10040-012-0917-4.
  • Frampton, Andrew, et al. “Permafrost Degradation and Subsurface-Flow Changes Caused by Surface Warming Trends”. Hydrogeology Journal, vol. 21, no. 1, 2013, pp. 271-80, https://doi.org/10.1007/s10040-012-0938-z.

2011

  • Frampton, Andrew, et al. “Non-Isothermal, Three-Phase Simulations of Near-Surface Flows in a Model Permafrost System under Seasonal Variability and Climate Change”. Journal of Hydrology, vol. 403, no. 3-4, 2011, pp. 352-9, https://doi.org/10.1016/j.jhydrol.2011.04.010.