Neslihan Taş

2022

  • Zhang, Lijie, et al. “Unravelling Biogeochemical Drivers of Methylmercury Production in an Arctic Fen Soil and a Bog Soil”. Environmental Pollution, vol. 299, 2022, p. 118878, https://doi.org/10.1016/j.envpol.2022.118878.

2020

  • Philben, Michael J., et al. “Anaerobic Respiration Pathways and Response to Increased Substrate Availability of Arctic Wetland Soils”. Environmental Science: Processes & Impacts, vol. 22, no. 10, 2020, pp. 2070-83, https://doi.org/10.1039/D0EM00124D.
  • Philben, Michael J., et al. “Influences of Hillslope Biogeochemistry on Anaerobic Soil Organic Matter Decomposition in a Tundra Watershed”. Journal of Geophysical Research: Biogeosciences, vol. 125, no. 7, 2020, https://doi.org/10.1029/2019JG005512.

2018

  • Müller, Oliver, et al. “Disentangling the Complexity of Permafrost Soil by Using High Resolution Profiling of Microbial Community Composition, Key Functions and Respiration Rates”. Environmental Microbiology, vol. 20, no. 12, 2018, https://doi.org/10.1111/1462-2920.14348.
  • Taş, Neslihan, et al. “Landscape Topography Structures the Soil Microbiome in Arctic Polygonal Tundra”. Nature Communications, vol. 9, no. 1, 2018, https://doi.org/10.1038/s41467-018-03089-z.

2016

  • Mackelprang, Rachel, et al. “Permafrost Meta-Omics and Climate Change”. Annual Review of Earth and Planetary Sciences, vol. 44, no. 1, 2016, pp. 439-62, https://doi.org/10.1146/annurev-earth-060614-105126.

2014

  • Jansson, Janet K., and Neslihan Taş. “The Microbial Ecology of Permafrost”. Nature Reviews Microbiology, vol. 12, no. 6, 2014, pp. 414-25, https://doi.org/10.1038/nrmicro3262.