Publications

Displaying 1 - 20 of 35
By year of publication, then alphabetical by title
  1. Yang, Dedi, et al. “ Fine-Scale Landscape Characteristics, Vegetation Composition, and Snowmelt Timing Control Phenological Heterogeneity across Low-Arctic Tundra Landscapes in Western Alaska”. Environmental Research Ecology, vol. 3, 2025, https://doi.org/10.1088/2752-664X/ad9eb8.
  2. Wang, Chen, et al. “Advancing the Understanding of Snow Accumulation, Melting, and Associated Thermal Insulation Using Spatially Dense Snow Depth and Temperature Time Series”. Geophysical Research Letters, vol. 52, 2025, https://doi.org/10.1029/2024GL114189.
  3. Bachand, Claire, et al. “Brief Communication: Monitoring Snow Depth Using Small, Cheap, and Easy-to-Deploy snow–ground Interface Temperature Sensors”. The Cryosphere, vol. 19, no. 19, 2025, https://doi.org/10.5194/tc-19-393-2025.
  4. Wang, Xiaorong, et al. “Can large‐scale Satellite Products Track the Effects of Atmospheric Dryness and Soil Water Deficit on Ecosystem Productivity under Droughts?”. Geophysical Research Letters, vol. 52, 2025, https://doi.org/10.1029/2024GL110785 .
  5. Kim, Kwansoo, et al. “Determination of Ground Subsidence Around Snow Fences in the Arctic Region”. Lithosphere, vol. 2025, 2025, https://doi.org/10.2113/2025/lithosphere_2024_215.
  6. Shirley, Ian A, et al. “Disentangling the Impacts of Microtopography and Shrub Distribution on Snow Depth in a Subarctic Watershed: Toward a Predictive Understanding of Snow Spatial Variability”. Journal of Geophysical Research: Biogeosciences , vol. 130, 2025, https://doi.org/10.1029/2024JG008604.
  7. Berns-Herrboldt, Erin C., et al. “Dynamic Soil Columns Simulate Arctic Redox Biogeochemistry and Carbon Release During Changes in Water Saturation”. Scientific Reports, vol. 15, 2025, https://doi.org/10.1038/s41598-024-83556-4.
  8. Torn, Margaret S., et al. “Large Emissions of CO2 and CH4 Due to Active-Layer Warming in Arctic Tundra”. Nature Communications, vol. 16, 2025, https://doi.org/10.1038/s41467-024-54990-9.
  9. Orndahl, Kathleen M., et al. “Next Generation Arctic Vegetation Maps: Aboveground Plant Biomass and Woody Dominance Mapped at 30 M Resolution across the Tundra Biome”. Remote Sensing of Environment, vol. 323, 2025, https://doi.org/10.1016/j.rse.2025.114717.
  10. Hantson, Wouter, et al. “Scaling Arctic Landscape and Permafrost Features Improves Active Layer Depth Modeling”. Environmental Research Ecology, vol. 4 , 2025, https://doi.org/10.1088/2752-664X/ad9f6c.
  11. Lathrop, Emma, et al. “Shrubs Strongly Influence Snow Properties in Two Subarctic Watersheds”. Permafrost and Periglacial Processes, 2025, https://doi.org/10.1002/ppp.2263.
  12. Freitas, Nancy L., et al. “Substantial and Overlooked Greenhouse Gas Emissions from Deep Arctic Lake Sediment”. Nature Geoscience, vol. 18, 2025, https://doi.org/10.1038/s41561-024-01614-y.
  13. Gallois, Elise, et al. “Tundra Vegetation Community, Not Microclimate, Controls Asynchrony of above and Belowground Phenology”. Global Change Biology, vol. 31, no. 4, 2025, https://doi.org/10.1111/gcb.70153.
  14. Pau, George Shu Heng, et al. “A Reduced-Order Modeling Approach to Represent Subgrid-Scale Hydrological Dynamics for Land-Surface Simulations: Application in a Polygonal Tundra Landscape”. Geoscientific Model Development, vol. 7, no. 5, 2014, pp. 2091-05, https://doi.org/10.5194/gmd-7-2091-2014.
  15. Riley, William J., and Chaopeng Shen. “Characterizing Coarse-Resolution Watershed Soil Moisture Heterogeneity Using Fine-Scale Simulations and Reduced-Order Models”. Hydrology and Earth System Sciences, vol. 18, no. 7, 2014, pp. 2463-8, https://doi.org/10.5194/hess-18-2463-2014.
  16. Painter, Scott L., and Satish Karra. “Constitutive Model for Unfrozen Water Content in Subfreezing Unsaturated Soils”. Vadose Zone Journal, vol. 13, no. 4, 2014, https://doi.org/10.2136/vzj2013.04.0071.
  17. Gangodagamage, Chandana, et al. “Extrapolating Active Layer Thickness Measurements across Arctic Polygonal Terrain Using LiDAR and NDVI Data Sets”. Water Resources Research, vol. 50, no. 8, 2014, pp. 6339-57, https://doi.org/10.1002/2013WR014283.
  18. Dou, Shan, and Jonathan B. Ajo-Franklin. “Full-Wavefield Inversion of Surface Waves for Mapping Embedded Low-Velocity Zones in Permafrost”. GEOPHYSICS, vol. 79, no. 6, 2014, pp. EN107 - EN124, https://doi.org/10.1190/geo2013-0427.1.
  19. Rogers, Alistair, et al. “Improving Representation of Photosynthesis in Earth System Models”. New Phytologist, vol. 204, no. 1, 2014, pp. 12-14, https://doi.org/10.1111/nph.12972.
  20. Moody, Daniela I., et al. “Land Cover Classification in Multispectral Imagery Using Clustering of Sparse Approximations over Learned Feature Dictionaries”. Journal of Applied Remote Sensing, vol. 8, no. 1, 2014, p. 084793, https://doi.org/10.1117/1.JRS.8.084793.